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Three-dimensional steady flow past a body placed in a uniform stream of vis-
cous, thermally conducting fluid is considered within the framework of the
Oseen approximation. Asymptotic forms for the fundamental matrix are ob-
tained for both supersonic and subsonic flow. It is shown how the solution to
the flow past a body may be obtained from the fundamental matrix, and that
the fundamental matrix itself provides the far field flow.

1. Introduction

The fundamental matrix for steady three-dimensional flow of a viscous, heat-
conducting, compressible fluid is studied within the framework of the Oseen
linearization. An asymptotic form of the solution is obtained, which is applic-
able for large distances from the origin compared with the characteristic length
of the fluid (which is of the order of the mean free path).

It is shown how the problem of the flow past bodies can be formulated in terms
of the fundamental matrix. These problems lead to integral equations, the solu-
tions of which determine the manner in which the fundamental matrix is dis-
tributed to yield the desired flow field. Because of the complexity of the resulting
integral equations, this has not been carried out in any specific case. However,
it is shown that the fundamental matrix itself furnishes the flow directly for
large distance from the body compared with body size. The solution is given in
terms of such quantities as the total force on the body and the total heat added
to the fluid by the body.

The effect of viscosity on compressible fluid flow was investigated by Lager-
strom, Cole & Trilling (1949), in the study of problems of wave propagation and
of two-dimensional steady flows. Fundamental solutions for these problems were
considered, and asymptotic forms were derived for the various cases. These solu-
tions exhibit the viscous ‘quasi-wave’ noted by earlier workers (see the paper
cited above for a bibliography), which becomes the hyperbolic wave in the limit
of vanishing viscosity. Thus the inviscid characteristics play a central role:
while they no longer represent discontinuities, for large values of the local
Reynolds number they locate regions of rapid but continuous change. Therefore
viscosity acts to smooth out the discontinuities of the inviscid theory. Accord-
ingly, in obtaining the fundamental matrix the point of view taken in the present
paper is that the inviscid theory provides an adequate description of the flow
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field except in the neighbourhood of its discontinuities, the characteristics.
These are the wake and, in the supersonic case, the Mach cone. These singularities
indicate regions where the dissipation becomes important, and a boundary-layer-
type analysis is carried out in their neighbourhood. The corresponding two-
dimensional analysis was carried out by Sirovich (1968); the present paper
represents an extension of this work to three dimensions.

For any problem involving fundamental solutions, a linear set of equations
is required. The linearization used here, as in the two-dimensional steady flow
problems mentioned above, corresponds to the Oseen linearization (i.e. the
flow variables are considered to be small perturbations of a uniform free-stream
flow). This approximation is, of course, not valid near the body, where the velo-
city vanishes. In fact, the Oseen equations give a qualitatively incorrect de-
scription of the boundary layer. However, the linearization should be applicable
far from the body, since all disturbances caused by the body eventually die out.
Thus the Oseen equations can be used to describe the structure of the viscous
wake far from the body.

However, difficulties arise in using the linearized equations to describe super-
sonic flow. Consider inviscid flow past a slender body. According to the
linear theory, Mach lines (or Mach cones in three dimensions) emerge from the
body, and are inclined at an angle determined by the free-stream Mach number.
In the non-linear theory, however, these Mach lines are not straight and parallel,
but are curved, and shocks emerge from the leading and trailing edge. Also, the
flow behind the rear shock is not uniform. Even for very slender bodies this pat-
tern emerges as one goes far enough from the body, since the effects of the non-
linear terms, while small, are cumulative. Thus the linear theory is a non-uniform
approximation, which cannot describe the neighbourhood of infinity.

For two-dimensional flow, the effects of the non-linearity can be accounted
for to a first approximation by the simple wave theory (Friedrichs 1948).
Whitham (1952) obtains a uniformly valid first approximation for bodies of
revolution, using as a basis essentially the method of strained co-ordinates
(see e.g. Van Dyke 1964). In these flows, the far field exhibits the ‘N wave’,
in which the pressure jumps discontinuously across the front shock, then de-
creases linearly, until it jumps again across the tail shock. In the linear theory,
the shock waves do not appear, the spreading of the characteristics does not
occur, and the theory cannot describe the approach to infinity. However, for
sufficiently slender bodies, there is a large region of the flow field which can be
adequately described by the linear theory. In addition, the linear theory provides
a good model in which the effects of viscosity and thermal conductivity on
compressible fluid flow can be studied in the general three-dimensional case.

2. The role of the fundamental matrix

Asymptotic fundamental solutions for two-dimensional steady gasdynamics
have been obtained by Sirovich (1961, p. 283) for both supersonic and subsonic
flow. A technique which shows how boundary-value problems can be formulated
in terms of the fundamental solutions (or, equivalently, the fundamental
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matrix) has been developed by Sirovich and Salathe, and applied to a number
of problems in gasdynamics and magnetohydrodynamics (Salathe & Sirovich
1967, 1968; Sirovich 1967, 1968).

Sirovich (1968) discusses the steady dissipative gasdynamic flow past two-
dimensional bodies. The formulation of the problem in terms of the fundamental
solution, and its role in the deseription of the far field, was carried out for an
arbitrary number of space dimensions. A brief review of that discussion will
be given, and the remainder of the paper will be devoted to obtaining the funda-
mental matrix.

If the domain of definition of the dependent variables is extended over all
space by defining a source-free flow in the interior of the body, then the body
surface, denoted by @(x) = 0, becomes a surface of discontinuity. It can be
shown (Sirovich 1967, appendix 1) that, assuming no flow across the body surface,
the governing equations are

pa=0,

(pixt+ p1 1) = [p1-10].05(S)

[P0 (e + 3a2) + i — 1'Iu+0] [Q1.08(3)
3= W8+ 1)+ (F—3u )V'uai:i

O +«VD = «[P1n8(5),

(2.1)

>'.:|)<)< <

where p, @, e, p, T are the fluid density, velocity, internal energy, pressure and
temperature; fI 6 I, B, k the stress tensor, heat flow vector, and coefficients of
wscos1ty, bulk viscosity and heat conductlwty, and 1 denotes the unit matrix.

88 ) is the delta function defined on S (X) = 0, and can be written

3

8(8) = |, I1 8(&,—2}) dS(K"). (2.2)

It has the property f f(X) s®yav = f Ni ds,
v §

where ¥ is any volume containing 8, and f(X) is any functign defined over V.
The square brackets [ ] denote the jump across the surface S = 0, and n is the
outward drawn normal to this surface.

Oseen equations

We consider steady flows linearized about the uniform upstream conditions,
and define the following normalized perturbation quantities:

__ﬁ"Po _ﬁ"Uo _{ % t _
p= Py’ ' @ ’ T_(Toa%) -1

P—py P U,

= , P=-2-=P+p, U=-2 2.3
P P03 Po a3 TP a,’ (2:3)

i 0 %
II= ) Q='—.—f’ X=-,

Podh Poalc, Tt I

14.2
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where zero subscript denotes the free-stream value and

ay = ((apo/apo)ro)i’ Cy = (0eg/0Tp) 5y
L is an unspecified length scale, which we shall later make definite. Taking the
complimentary flow to be identically zero, the linearized equations are:
U.Vp+V.u=0,
U.Vu+Vp+ VT -¢V2u—9VV.u = n.(P1-I)4(8),
U.VT+xV.u+V.Q =n.Q88)-xU.(Pn-II.n)é(S),
Q = —EVT +£&nTo(8),

(2.4)

where S denotes the body surface in terms of the normalized co-ordinates, and

7 = (B+3n)/(poaoL), &= pl(agp,L),

2.5)
= L), y=(y—-1} 7= 20 (
§=kllpoagoy ), x=r—1% X=r7my
We have used the relationship, 2
2 _%
Y= Cy a%,
where & = (2Pol2po)s,y

and c,, is the specific heat at constant pressure. The equations of state of the gas,
e = e(p,T), p = $(p, T), have been left arbitrary subject only to the compat-

ibility relation, A Av A N
Y p— p2(oe[op)s = T(oploT),.
In obtaining (2.4), the momentum equation was used to subtract the mechanical
work from the energy equation.
We note that the sources in the above equations are given in terms of the

stress, heat conduction and temperature at the body surface. The equations can
be written in the condensed form

Lw = F&(S). (2.6)

Thin bodies
Suppose the body is thin and can be written in the form

z = ef*(z, y),

where €is a small number. Then the source terms in (2.6) can be simplified by ex-
panding in powers of ¢ (Sirovich 1968). Let 6(x, y) be the characteristic function
of the projection 8* of S ontoz = 0;i.e. 6 = 1if (x,y)€8*, 8 = 0 otherwise. Then

Fo(8) = O(x, y) {(F*+ F~) 8(2) — 6" (2) (F*f+ + Ff )} + O(e?),
where F+ is the value of F at the upper or lower surface. Using

nt = te,TeVft+0(e2),
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where e, is the unit vector in the z direction, we find:
F£ =0, te,.(P*1-II%), t+e,.(Q= —xU.{P*1-II#}, + fe, T*]
+¢[0, F (PE1~TIIF).Vf%, 1 (Q* —xU.{P*1 -II+}) . Vf, T TV f4]
+ O(e?)
= Fy + Fi + 0(e?). (2.7
Therefore we have to first order in €:
Fo(8) = 0(x, y){(F§ +Fy) 8(2) +(Fi + Fr)d(2)
—e8'(2) (F £+ F5 )} 4+ 0(e¥)
= 0(z,3){N(z, 9) 8(z) + N*(@,9) 8'(2)} + O(e?). (2.8)
Consequently, for thin bodies, (2.6) can be written in the form,

Lw = 862 [ N(e', /) 8w =) 8y —9) 0/ ! ¢

+ 8’(z)f N*(@',y") 8@ —2") 8y —y') O(a',y") da’ dy'. (2.9)
The fundamental matrixt W is defined as the solution to
LW = 16(x),

where 1 denotes the unit matrix.

From (2.9) it is evident that the solution w is given in terms of the fundamental
matrix by

w =ffW(x—x’,y—-y',z).N(x’,y’)@(x',y')dm'dy'

+ 6—az_Uw(x _'x,: Yy— ?/', 2). N*(x" ?/') e(x,: ?/') dx’ dy,' (2-10)

We note that the zeroth-order solution in e corresponds to the flow past a
flat plate with characteristic function 6(z, y).

Far field

We have seen that for thin bodies the solution is given as an integration of the
fundamental matrix over a portion of the (z,y) plane. It will now be shown
that, for distances from the body which are large compared with body size, the
fundamental matrix itself (or, more precisely, the fundamental solution) fur-
nishes the flow field directly. To see this, we normalize length with respect to
distance R from the body. Then, for E large compared with a characteristic
body dimension [, we have

Fo(S) = fs F(x,) 8(x —x,) dS,
- 8(x)fSF dSo—ég;é‘(x)fsxodeSo+...
= Gi(x)+0 (1%) , (2.11)

which represents a multipole expansion, obtained by expanding §(x —x;).

+ This is often referred to as the Green’s Tensor.
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Consequently, (2.6) reduces to the equations for the fundamental solution,
LW/ = Gé(x),

where G, the source strength, is a constant. The fundamental solution is related
to the fundamental matrix by W/ = W.G. Equation (2.11) shows that the source
strengths G are the quantities F integrated over the body surface. In the momen-
tum equation, this is the total pressure and viscous force exerted on the fluid
by the body; in the energy equation, it is the total heat added by the body.
The source in the heat conduction equation will be referred to as the virtual heat
conduction; it is significant when, for example, a temperature gradient is
maintained across the body.

It should be emphasized that this result is not based on the assumption of a
thin body. However, the linearization is essential in all the above, since the
mechanical work was subtracted from the energy equation by multiplying the
momentum equation by U. Without the linearization, the momentum equation
must be multiplied by u, which involves a product of distributions, a meaning-
less concept.

Reduction to five equations
The above set of equations can be reduced to five equations by substituting Q
from the heat conduction equation into the energy equation. We shall consider
the following system for the fundamental matrix:

AV = 14(x), (2.12)
where
u.v V. 0
A=| V U.V-{V2—9yVV, KV . (2.13)
0 xV. U.V-§ve

The zeroth-order solution for flow past a thin body (corresponding to flow past
a disk) is given in terms of V byt
0

V= f Oz, y\Vx—2',y—vy,2). e,.[P1-1II] de'dy’, (2.14)
e,.[Q - %(P1-TI). U]
(here [ ] denotes the jump across the body) and the far field flow by
vV~ V.f [0,n.(P1-II}),n.Q—¥n.(P1-II).U]dS
8

+ {f niT ds} .VV.[0,0,0,0,1]1d8, (2.15)
s
where v = {p,u, T}.

3. Non-dissipative theory

In §4, we shall obtain the fundamental solution corresponding to the Oseen
operator (2.12). It has already been shown that such a solution furnishes the

t To this order the source term £e,[7'] in the heat conduction equation can be ignored,
since [T'] = O(€) under usual circumstances.
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flow far from a body. The method of solution is essentially a boundary-layer

analysis carried out in the regions of singularities of the non-dissipative solution.

Consequently, the non-dissipative fundamental matrix must first be determined.
The non-dissipative fundamental matrix is the solution to

where
vu.v V. 0
Ayp=| V UV 4v | (3.2)

0 xV. U.V
To solve (3.1), we introduce Fourier transforms. Then
kU iky ik, ik 0
tky ik,U 0O 0 ik x
A\p(iK) =] ik, 0 kU 0 ikyxli, (3.3)
tky 0 0 kU dkgy
0 dkyy dkyx thyx ik U
so that V(tk) = Ay}, and
+ 00
tk.x .
Vix) = I f e x ATL (1K) dk,

_ ]. +o 6"k"CND dk
S (2m)P) - Dyp ’

(3.4)

where D, is the determinant of Ay p(¢k) and é ~p the transposed cofactor matnx
The determinant is given by Dyp = ikiU3{k3(U%—y)—y(k3+k2)}, and CND
can be written éND = ktU%Cyp, where the elements of Gy, are polynomials in
ik, ik, iks. They can be extracted from the integration as derivatives to give:t

Vi) = Cyo (53, 50 52) 91 0:2), (3.5)
where . r g
q’=<znl>arf =
AL (3.6)
and [ = iU(U2—y).

We carry out the integration of (3.6) first with respect to k,. If (U%2—1vy) > 0,
corresponding to supersonic flow, D = 0 has three real roots. If U?*—~y < 0,
corresponding to subsonic flow, then D = 0 has one real root, k; = 0, and two
complex conjugate roots. The path of integration is deformed under the real roots
because, as shown in §4, the effect of dissipation is to move them into the upper
half-plane.

+ By Cyp(d/0x, 8/8y, 8/2z) we mean a matrix operator obtained from Cyp(ik;, tky, ik,)
by replacing ik,, tk,, ik by 8/owx, 8/dy, 8/0z respectively.
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Denoting by @, the contribution to ® from the k, = 0 root, and by ®, or
@, theremaining contribution in the supersonic (hyperbolic) or subsonic (elliptic)
case, we obtain 1

5 H(2) Lin (y? + 223, (3.7)

yU

1 1 AR X
. . -1__Th®
27TH(x) 'yUCOSh it AR

@, =
(Dh = —
L He) Lt (3.9)

27 yU ’ )

1 ax
— : -1 e
D, = 47ryUsmh 7+

- 2,2\
4m,Uln (y®+2?)2sgn (x), (3.9)

where ok = = —d’.

®, can be added to @, or @, producing a cancellation (or partial cancellation
in the subsonic case) of the logarithmic terms. However, as is well known, the
three-dimensional solution contains a wake which, e.g. exhibits across it a jump
in u,. In the present form, these effects are contained in @®;; ®, and @, do not
contribute to the wake. Consequently, when the dissipative solution is discussed,
it will be seen that it is necessary to refine @, in the neighbourhood of y%+2% = 0,
while @, must be altered only along the Mach cone o} 2?— (y2+22) = 0, and ®,
remains unchanged.

In addition, the elements of Gy, take particularly simple forms when operat-
ing on either ®,or ®,and ®,. In fact, we can write (3.5) in the form

0 o 0 6 0 0 6 0 0
Kﬁj(x) = —Xi (%7 5?;7 a)Xj (3—27’ a'_ya 3_2) (Dh,e(x’ Y, z)+021 (3—‘1:, 5?}7 g) q)O’ (310)

U o 8 8 8 (y—1\} &
=(5Z L % (T )y
where X (‘yiax’ Yo y’}ay, o 8z’( 5 ) Uax)’ (3.11)
and 02 02 -1
Oh = (r=1) (b ) = —(r= 1408 =20 = (r=1) B,
o2 o2 a2 (3.12)

0‘3’3='yé?, C'g4=—‘}’w, C'g4=‘>’a—y2-

The reason for the existence of this representation is the following: the
contributions to the integral (3.6) occur only at the zeros of D. Cyp, is therefore
the classical adjoint of a degenerate matrix, and for the @, and @, contribution
its rank is n—1. From this (3.11) follows (see e.g. Nomizu 1966). For the @,
contribution, the rank is » — 3, and such a representation does not exist. How-
ever, (3.12) follows, since 0®,/0z = 0.

Flow past bodies

Equation (2.10) can be used to obtain the standard solutions of three-dimensional
wing theory. For non-dissipative flows the heat conduction equation does not
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enter, and w, W in (2.10) can be formally replaced by v and V, where V is given
by (3.7)—(3.12). The vectors N, N* can be replaced by the 5-vectors,

N = {0, - R(ff —fa): =Bl —Fo ), (0u—2), BUX(E —f2)}
N* = {0,0,0, — P(f+—f"), 0}.

These are obtained from (2.7) and (2.8), when § =9 ={ = 0.

4. Dissipative theory

In this section, the fundamental solution corresponding to the dissipative
equations will be obtained. As pointed out in §2, the fundamental solution
provides the far field solution. It also furnishes the full flow field if the super-
position described in §2 is carried out. This, however, will not be done in the
present paper.

The equations for the fundamental solution are given above ((2.12), (2.13)),
and, as in the non-dissipative case, the solution can be written in the form,

1
(2m)?

_ 1 + o e‘ik.xédk
~ (2m)3 D

Vix) = f 7 prex Ak dk

(4.1)

where A-1 denotes the inverse of A, and C and D are the transposed cofactor
matrix and determinant of A, respectively.

The integration indicated in (4.1) cannot be carried out, and so an asymptotic
solution will be obtained. The point of view taken is that the non-dissipative
solution is satisfactory in the regions bounded away from its singularities, which
occur along the characteristics. In the present case, these are the wake and the
Mach cone. They indicate regions where the higher-order derivatives, or the
dissipative terms, become important. We shall examine the neighbourhood of the
characteristics using a boundary-layer-type analysis.

The waket

The wake is characterized by the fact that the derivatives across it are large
compared with the derivatives along it. If the previously unspecified length scale

L is fixed by max{Z,7, £} = 1, (4.2)
then the condition on the derivatives becomes, in terms of the wave-numbers,
by < (ko Xe3) < 1. (4.3)

It is then found that the leading terms in D are:
D ~ [yik, U + E(k% + k3)] [¢k, U + §(k3 + %3)12 (k3 + &3). (4.4)

+ The asymptotic analysis is carried out in wave-number space, following and generaliz-
ing to three dimensions a method given by Sirovich (1961).
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This result was obtained by requiring the leading dissipative and non-dissipative
terms to be of the same order. A consequence of this is that

ky ~ K13, (4.5)

which furnishes the relative order of k,, ks, ks.
With this ordering, it can readily be found that the non-zero C;are to lowest
order:

Ou = —Jy=1) 05 = (y=1) O = [ik, U + L(A+ D)2 (k3 + k3) (¥ — 1),

(k§+k§)@
“u= _—m 34

= [@'klU +E(k3+ k2)] Ly, U + £(R5 + K5)) (K3 + K3)

k2+k k2+k
On =0 =270

(by symmetry, @i,. = @,-,). From this we can deduce that

_ U2+ 22

U 2 2
.VZZ 41 €exp ( (:’ixz ¢ )) )
(2%, 9% Uy®+2°)
(Vg Vag) = mge P ( —Txg—) “s)
1 (2%,9%) U(y*+27) '
- (2wv<y2+z2>‘nv<y2+z2>2) !1“”‘" (‘ 4¢ “)}

oy _U(y2+z2>)
Vo= 4n(y2+z2)x§exf’( 4zl

e o (-G )

These solutions are the extension to the dissipative case of that portion of the
non-dissipative solution given by .

The entire solution is given by adding the contribution from ®j; or ®,, al-
though, as remarked in §3 and shown below, ®@,, is also altered by the presence of
dissipation.

In the limit {, £— 0 the above solutions reduce to

Vi = 7'7;013(3,)3@) = —(y-1t; = (v~ l)Vss;\

Vae = 8(y) 0(2),

(4.7)
V; = 8(y) 6(2) [8;3 0j32% + 834 O30 y® — O35 64 y2]

1
T UA (% —y?) (8404~ i3 0j) + Y2035 4].

These are seen to correspond to the @, contribution to the non-dissipative solution.
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The Mach cone

For supersonic flow, the non-dissipative solution contains a characteristic surface
known as the Mach cone. The solution is non-zero only in the region downstream
of the cone, and becomes unbounded as the cone is approached. In the neigh-
bourhood of the Mach cone, dissipation becomes important, and the solution
must be re-examined in this region.

It is convenient in the present case to choose L to be some arbitrary macro-

scopic length, so that 8 =max{£, 7,8 < 1. (4.8)

We shall obtain an asymptotic solution applicable for small 8. The final solution
must actually be independent of L.

In (4.1) the cofactor matrix & can again be removed from the integral as a
differential operator, and the solution is given in terms of the integral,

1 e®-xdk, dk, dk, (4.9)
T (2m)? D*(iky, ik,, k)’ ’
where D* = D/(U2k?). From this it is evident that @ is the solution to the differen-
tial equation, 2 2 8
L P, =
D (ax’ 5 az) ® = 8(x), (4.10)

where §(x) = &(x) (y) d(z). Expanding the determinant to obtain D, we find this
equation is:

2 (0 o ® e # o
2__ i —_—— e
{ v 7)613+7U62<0y2+32)+8[a6x‘+b312<3y2+622)+ (63/ +3z)]
+0(32)} ® = 5(x)d(y) 3z). (4.11)

The symbol 0(82) denotes additional terms of the form §2+» times derivatives of
order 5+n, where n = 0,1, 2, and

a=SEU-op+Torb i,
b= g(am 47)+%U2+§(U2—2),

If & = 0, the solution to (4.11) is

1 [0 /%
= — . -1__Th" 4.12
2ryU % sh” (y2+22F (4.12)
where af = y/(U*—v). This result was obtained in §3. It is not a uniformly valid
approximation for small 8, and the neighbourhood of the cone a3 x2 — (y2 + 22) = 0,
z > 0 must be re-examined. To do this, we rewrite (4.11) in cylindrical co-
ordinates, r = (y2+22)}, 0 = tan—1(z/y), , and then transform to the co-ordinates
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(h,t,0), where h denotes distance along the cone and ¢ distance normal to it.
This transformation is given by:

h=xcosl,+rsinb,,
t = —xsind, =rcosl,.

where 0, is the Mach cone angle, measured from the positive x axis. We define
the inner variable 7' = ¢/,/8, and consider an inner expansion for @ of the form,

Oh,T;8) = Ay(8)D1(R, T) +0(Ay), (4.13)

where A (d) is to be determined. If the expansion (4.13) is substituted into (4.11),
which must be rewritten in terms of 4, T', §, and the limit 6 > 0 taken, we obtain

the equation, 2 1 AN Y (4.14)
3h+§ﬁ—27'cost98_’_l‘2 or2 Tt .

where s = asintf,, + bsin?4,, cos®0,,+c cos*d,, > 0. The particular form of the
stretching factor ,/8, used in defining the inner variable, was chosen to make the
leading dissipative and non-dissipative terms the same order.

We need not consider the singularity on the right-hand side, since the appro-
priate solution to (4.14) will be obtained by matching with the outer solution,
and by using certain integral conditions imposed by the requirement that the
solution is the fundamental solution. We introduce the change in variables

T = (2ycos0,/s)}T and ¢ =ht 38(1)2 ;
so that (4.14) becomes i o 415
oh ort (#19)

The fundamental matrix is obtained by operating on @ with the transposed
cofactor matrix C Since we have used D* instead of D, we have

8 o o
V=0 () ©
where C(k) = G(k)/ U243

Each of these operators must be written in terms of 4, ¢, §, transformed to inner
variables, h, T, 6, and evaluated in the limit & - 0. The result is that the funda-
mental matrix can be written in the form,

A (S
81}(&&) YYy, (4.16)
where
Y = (1, —%, —MZUL?'L)J" cos 0, -W‘(U—%ﬂsme, (y—l)’z)_ (4.17)

Y must be determined as a solution of (4.15) such that it matches with the
inviscid solution as 7— — 0. To this end, we obtain the leading term in the inner
expansion of the outer, inviscid solution. It is sufficient to match any one element
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of V,, say ¥, to obtain ¢ and A, (). The matching of the remaining elements will
then follow directly. From §3, the outer solution for ¥, is:

Vo— L v od
2 - () (g 2
where of = y/(U%—7). We transform this solution to the (k,7) variables, and
take the leading term in the expansion in . The result is:
B
I’ll ~ 8%’&*('—7)‘& (T < 0)’
U cos< 6

where S hntidel A
sty (U2 y)k

The expansion is limited to 7 < 0, corresponding to the interior of the Mach cone,

since the non-dissipative solution vanishes outside the cone.

We must match this with the leading term of the outer expansion of the inner
solution, which is given by: A

Vll - ahi 7101
where ¥,(—7) denotes the leading term in the expansion of (1) for small
¢ (or large 7), Wlth t < 0. Hence we see that A,(8) = 8%, and ¥ must be such that
Y(T) ~ Yry(—7) —I_ﬁ@ as T —o0. (4.18)

Equation (4.15) admits a similarity solution of the form,

.1-2
Y =h"g (—E) = h"g(v). (4.19)
If ¢ is to have the form (4.18) as 7—> — 0, or v > — 0, then clearly we must have:
B
~ - 4.20
g 2~/2lvli_ y—> w’ ( )
and n = —32. With this choice of n, g satisfies the confluent hypergeometric
equation, vy +(E-v)g'—39 = 0. (4.21)
Two independent solutions are
= H($.3v)
372 7 1
=1—§Z+E8h_2+."’ (422)
and gs =1 vH($, %, v)
T 51 9 7
= —ﬂ(l EYRAE TS YRS ) (4.23)
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where H(a,c,x) is the confluent hypergeometric series. As v—> —o0, we have

) 2y2ht (1> +0), (4.24)
( ]Tl%
3 ¥4
I pf 2|‘£2|§ sgn(7) (17— +o0), (4.25)

where I'(z) is the gamma function, and sgn (7) denotes the sign of 7. The full
solution is a linear combination of ¢; and g,,

g = €101+ Cafa
where ¢, ¢, must be determined. One relation for ¢,, ¢, is obtained from the match-
ing condition (4.18), which, with (4.24) and (4.25), gives:

LT T _ B
(-7 2T T T aye

(4.26)

In order to find ¢, and ¢,, we need a second condition on g. This can be obtained
by recalling that the solution must be a fundamental solution, and the governing
equations contain the delta function on the right-hand side. Consider, e.g. the

continuity equation, U.Vp+V.u = 8(x).
From this we obtain: f (pU.n+u.n)dS =1, (4.27)
s

for any surface S enclosing the origin.

We use for p and u in this integral the composite expansion 1* = ¢/ 4 ¢® — y¥0),
which is a uniformly valid solution over the entire flow field. Here v denotes any
variable, v the outer solution, ¥”the inner solution, and v the inner expansion
of the outer solution.

We substitute p° and u¢into (4.27). Then, sincet

f (pP9U.n+u?.n)dS =1,
S

we have: f (PPU.n+u®.n)dS =f (p*@U.n+u n)dsS. (4.28)
s s

We choose for S the conical surface S with apex at (,, 0, 0), normat to the Mach
cone, and extending to infinity, i.e. the surface,

@—x)2—af(y2+22) =0 (x< Zg)-

More precisely, we consider the finite portion of § given by x, < < z,, and the

hemisphere, (@—2)2+y2+22 = (1jof) (7, —20)® (¢ < ),

T This integral does not, in fact, exist in the ordinary sense, since the integrand becomes
infinite as 1/t as the Mach cone is approached. However, fundamental solutions must be
expressed as distributions; it is in this sense that such integrals must be evaluated (see
e.g. Gelfand & Shilov 1964). Alternatively, one may use the concept of finite part, as first
introduced by Hadamard (1932).
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and take the limit #; > —co. The integral over the hemisphere vanishes in the
limit, and we are left only with the integral over S.

On the surface 8, U.n = Ucosf,, and u.n = u,cos0,,+ (u2+u)}sing,,.
In terms of the fundamental matrix the integral in (4.28) is

z f [V;U 008 0,, + V3, c08 6, + (V3;+ V3,)tsin 6,,1dS.
iJ8
The left-hand side is obtained by using

W=
V’L] a&hizlg wi

and the right-hand side by using
B
t(o) — "
i 7 v 200
(We obtained above the form of Vi{?. The remaining elements of Vi are found
in the same manner.)
Equation (4.28) reduces to

f YdS = —Bf (4.29)
Now, fs(_T)& ds = foo%ﬁf

where E is distance along § from the apex (z,,0,0), and is related to 7 by
B =z,sin6,, +t = 24sin 0,, — Ad¥7'(A = (s/2y cos 6,,)}, 7" = — 7). Hence, the above
integral b : - . ,
integral becomes 27TJ‘I-S’D'9’~N“xosm Om—ANOT dr'.
0 7'}
This integral, which must be interpreted within the framework of the theory of
distributions (see the last footnote), vanishes to lowest order in 8. Consequently,
¥ must satisfy the condition

fs YdS =0, (4.30)

or f:g*(T/Jh)RdR —o0,

where g*(7/\Jh) = g*(o) = g(73/h). Now, R = z,sin8—A(Sh)}s, so the above
integral may be written:
x,8in 6/A(SR)E
f g*(0) (z,8in 6,, — A(8h)to) A(SR)Edo.
To lowest order in &8, we therefore have
—+ @
g*(o)do =0

This condition requires that g* be an odd function of 7. Hence ¢; = 0, and the

solution is
_ Br T'(}) 5 3 72
w(T!h) = 4‘\/2 h&_ F(%)H (I’ 23 '—4h ) (4.31)
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U cost 6 T
or V=0191 —— — __YYL (—) , 4.32

where L(7/,/h) = 7/ Jh H(2,%, — 72/4h) is plotted in figure 1. Note that
L(—2) = — L(z).
As z—> o0, L(z)-> 1:382/z%. This curve is indicated by the broken line in the figure.

T
)
e
\
¥
\
\
\
A
\
\

1.0

0-8 /

0-6

L(x) / \ \
0-4 N

02 ~

0 1 2 3 4 5 6 7 8 9 10

Fieure 1. The function L(7/4/h), which describes the structure of the Mach cone accord-
ing to (4.32). The curve is antisymmetric, L{—7/{h) = —L(7/\/h), and is plotted only
for positive argument. The broken curve represents the inviscid solution.

5. Conclusions

The fundamental solution provides the far field flow within the framework
of the approximations described above. The various regions which we have
studied can be combined to obtain a picture of the complete flow field. Behind
the body there is a wake structured by the dissipative effects. In subsonic flow
the effects of viscosity and thermal conductivity are confined to thisregion, butin
supersonic flow the Mach cone also becomes structured through the action of
dissipation. Behind the Mach cone, the flow is given by the non-dissipative theory,
and this solution matches the solution near the Mach cone in an asymptotic sense.

The solution in the wake is a natural extension of the results of Sirovich (1968).
There the wake was found to be of the form e~**=/, /z, where y is the direction
normal to the wake. In the present case, this term is replaced by

(€% Jz) (672" ).

In addition, there are terms with no counterpart in the two-dimensional case
(Vsas Vaas Vag), Which describe the cross-flow.

The wake solution is a generalization to compressible flow of the well-known
solution of the far field laminar wake (e.g. Landau & Lifshitz 1959), and is
completely analogous in form. However, the wake now consists of two parts,
one a vorticity wake structured by viscosity, and the other an entropy wake
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structured by thermal conductivity. Only the vorticity wake occurs in in-
compressible flow. This decoupling of the wake was also noted by Sirovich in
the two-dimensional case.

The structure of the three-dimensional Mach cone is in complete contrast to
the two-dimensional Mach lines. The solution for the Mach lines is the same as
for the wake, with ¥ and x replaced by distance normal to, and distance along,
the Mach line (Sirovich 1968). In the three-dimensional case, the solution grows
like 1/t as the Mach cone is approached, as in the non-dissipative theory.
However, as t approaches zero, the dissipation becomes important, causing the
solution to decrease, pass through the origin at ¢ = 0, and then behave in an
antisymmetric fashion for { < 0, as illustrated in figure 1.
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