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Three-dimensional steady flow past a body placed in a uniform stream of vis- 
cous, thermally conducting fluid is considered within the framework of the 
Oseen approximation. Asymptotic forms for the fundamental matrix are ob- 
tained for both supersonic and subsonic flow. It is shown how the solution to 
the flow past a body may be obtained from the fundamental matrix, and that 
the fundamental matrix itself provides the far field flow. 

1. Introduction 
The fundamental matrix for steady three-dimensional flow of a viscous, heat- 

conducting, compressible fluid is studied within the framework of the Oseen 
linearization. An asymptotic form of the solution is obtained, which is applic- 
able for large distances from the origin compared with the characteristic length 
of the fluid (which is of the order of the mean free path). 

It is shown how the problem of the flow past bodies can be formulated in terms 
of the fundamental matrix. These problems lead to integral equations, the solu- 
tions of which determine the manner in which the fundamental matrix is dis- 
tributed to yield the desired flow field. Because of the complexity of the resulting 
integral equations, this has not been carried out in any specific case. However, 
it is shown that the fundamental matrix itself furnishes the flow directly for 
large distance from the body compared with body size. The solution is given in 
terms of such quantities as the total force on the body and the total heat added 
to the fluid by the body. 

The effect of viscosity on compressible fluid flow was investigated by Lager- 
strom, Cole & Trilling (1949), in the study of problems of wave propagation and 
of two-dimensional steady flows. Fundamental solutions for these problems were 
considered, and asymptotic forms were derived for the various cases. These solu- 
tions exhibit the viscous ‘quasi-wave’ noted by earlier workers (see the paper 
cited above for a bibliography), which becomes the hyperbolic wave in the limit 
of vanishing viscosity. Thus the inviscid characteristics play a central role: 
while they no longer represent discontinuities, for large values of the local 
Reynolds number they locate regions of rapid but continuous change. Therefore 
viscosity acts to smooth out the discontinuities of the inviscid theory. Accord- 
ingly, in obtaining the fundamental matrix the point of view taken in the present 
paper is that the inviscid theory provides an adequate description of the flow 
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field except in the neighbourhood of its discontinuities, the characteristics. 
These are the wake and, in the supersonic case, the Mach cone. These singularities 
indicate regions where the dissipation becomes important, and a boundary-layer- 
type analysis is carried out in their neighbourhood. The corresponding two- 
dimensional analysis was carried out by Sirovich (1968); the present paper 
represents an extension of this work to three dimensions. 

For any problem involving fundamental solutions, a linear set of equations 
is required. The linearization used here, aa in the two-dimensional steady flow 
problems mentioned above, corresponds to the Oseen linearization (i.e. the 
flow variables are considered to be small perturbations of a uniform free-stream 
flow). This approximation is, of course, not valid near the body, where the velo- 
city vanishes. In  fact, the Oseen equations give a qualitatively incorrect de- 
scription of the boundary layer. However, the linearization should be applicable 
far from the body, since all disturbances caused by the body eventually die out. 
Thus the Oseen equations can be used to describe the structure of the viscous 
wake far from the body. 

However, difficulties arise in using the linearized equations to describe super- 
sonic flow. Consider inviscid flow past a slender body. According to the 
linear theory, Mach lines (or Mach cones in three dimensions) emerge from the 
body, and are inclined at  an angle determined by the free-stream Mach number. 
In  the non-linear theory, however, these Mach lines are not straight and parallel, 
but are curved, and shocks emerge from the leading and trailing edge. Also, the 
flow behind the rear shock is not uniform. Even for very slender bodies this pat- 
tern emerges as one goes far enough from the body, since the effects of the non- 
linear terms, while small, are cumulative. Thus the linear theory is a non-uniform 
approximation, which cannot describe the neighbourhood of infinity. 

For two-dimensional flow, the effects of the non-linearity can be accounted 
for to a first approximation by the simple wave theory (Friedrichs 1948). 
Whitham (1952) obtains a uniformly valid first approximation for bodies of 
revolution, using as a basis essentially the method of strained co-ordinates 
(see e.g. Van Dyke 1964). In  these flows, the far field exhibits the ‘N wave’, 
in which the pressure jumps discontinuously across the front shock, then de- 
creases linearly, until it jumps again across the tail shock. In  the linear theory, 
the shock waves do not appear, the spreading of the characteristics does not 
occur, and the theory cannot describe the approach to infinity. However, for 
sufficiently slender bodies, there is a large region of the flow field which can be 
adequately described by the linear theory. In  addition, the linear theory provides 
a good model in which the effects of viscosity and thermal conductivity on 
compressible fluid flow can be studied in the general three-dimensional case. 

2. The role of the fundamental matrix 
Asymptotic fundamental solutions for two-dimensional steady gasdynamics 

have been obtained by Sirovich (1961, p. 283) for both supersonic and subsonic 
flow. A technique which shows how boundary-value problems can be formulated 
in terms of the fundamental solutions (or, equivalently, the fundamental 
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matrix) has been developed by Sirovich and Salathe, and applied to a number 
of problems in gasdynamics and magnetohydrodynamics (Salathe & Sirovich 
1967,1968; Sirovich 1967,1968). 

Sirovich (1968) discusses the steady dissipative gasdynamic flow past two- 
dimensional bodies. The formulation of the problem in terms of the fundamental 
solution, and its role in the description of the far field, was carried out for an 
arbitrary number of space dimensions. A brief review of that discussion will 
be given, and the remainder of the paper will be devoted to obtaining the funda- 
mental matrix. 

If the domain of definition of the dependent variables is extended over all 
space by defining a source-free flow in the interior of the body, then the body 
surface, denoted by 8(f;) = 0, becomes a surface of discontinuity. It can be 
shown (Sirovich 1967, appendix 1) that, assuming no flow across the body surface, 
the governing equations are 

where p^, 6, e,  9, 9 are the fluid density, velocity, internal energy, pressure and 
temperature; ZI, Q, y,  /3, K the stress tensor, heat flow vector, and coefficients of 
viscosity, bulk viscosity and heat conductivity; and 1 denotes the unit matrix. 
&(A) is the delta function defined on 8(2) = 0, and can be written 

n n  

3 

6(8) = / A  n - 2;) dg&). 
s i=l Ivf(fr) 6(8)  &V = f d8, It has the property 

where V is any volume containing A, and f (2) is any functizn defined over V .  
The square brackets [ ] denote the jump across the surface 8 = 0, and n is the 
outward drawn normal to this surface. 

L 

Oseen equations 

We consider steady flows linearized about the uniform upstream conditions, 
and define the following normalized perturbation quantities: 

14-2 
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where zero subscript denotes the free-stream value and 

a, = ( ( ~ P ~ / ~ P ~ ) ~ , ) + ,  cv = (aeo/aTo)p,. 

L is an unspecified length scale, which we shall later make definite. Taking the 
complimentary flow to be identically zero, the linearized equations are: 

(2.4) I u . v p + v . u  = 0, 

U .Vu +Vp + xVT - 5V2u - 7VV. u = n . (P1 -n) a(&), 
U .VT + XV . u + V . Q = n . Q6(&) - XU. (Pn - II . n) 6( X), 

Q = - [VT + [nTG(S), 

where 8 denotes the body surface in terms of the normalized co-ordinates, and 

We have used the relationship, 
C P -  C2 0 Y = q - 3 ,  

where 4 = (~P0/~Po)so~ 

and cp is the specific heat at constant pressure. The equations of state of the gas, 
e = e(j3, ?), @ = @@, p ) ,  have been left arbitrary subject only to the compat- 
ibility relation, 

In  obtaining (2.4), the momentum equation was used to subtract the mechanical 
work from the energy equation. 

We note that the sources in the above equations are given in terms of the 
stress, heat conduction and temperature at the body surface. The equations can 
be written in the condensed form 

@ - jY((ae/ap^)$ = P(a@/a!QD. 

LW = FS(8). (2.6) 

Thin bodies 

Suppose the body is thin and can be written in the form 

= Ef*(Z,Y), 

where E is a small number. Then the source terms in (2.6) can be simplified by ex- 
panding in powers of E (Sirovich 1968). Let 8(x, y) be the characteristic function 
of the projection S* of S onto z = 0; i.e. 8 = 1 if (x, 9) ES*, 8 = 0 otherwise. Then 

FS(8) = B(z, y){(F+ + F-) 6 ( ~ )  - B&’ (x )  (F+f+ + F-f-)} + O(e2), 

where F* is the value of F at the upper or lower surface. Using 

n* = fe,TeVf*+O(s2),  
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where e, is the unit vector in the z direction, we find: 

F* = [0, +e,.(P*l-II*), fe, .(Q*-~U.{P*l-II*},  +le,T*] 
+E[O,  T (P1  -II*) .Vff, T (Q* -XU .{P*l -II*)) .Vf*, T ET*Vj’*] 

+ O ( @ )  
= F$ + E F ~  + 0(e2 ) .  (2.7) 

The fundamental matrix? W is defined as the solution to 

LW = 16(x), 
where 1 denotes the unit matrix. 

matrix by 
From (2.9) it is evident that the solution w is given in terms of the fundamental 

w = /jW(x - x’, y- y’, z )  . N(z’, y’) qz’, y’) dx‘dy‘ 

+”jW(x-z’, y -y f ,~ ) .N*(2 ’ , y ’ )8 ( s ’ ,  y’)dx’dy’. (2.10) 
a Z  

We note that the zeroth-order solution in E corresponds to the flow past a 
flat plate with characteristic function B(x, y). 

Far $eld 

We have seen that for thin bodies the solution is given as an integration of the 
fundamental matrix over a portion of the (x,y) plane. It will now be shown 
that, for distances from the body which are large compared with body size, the 
fundamental matrix itself (or, more precisely, the fundamental solution) fur- 
nishes the flow field directly. To see this, we normalize length with respect to 
distance R from the body. Then, for R large compared with a characteristic 
body dimension I ,  we have 

r 

Fa(&) = F(x0) 6(x - xO) dS0 
J S  

= G6(x)+O (i), (2.11) 

= S(X) 

which represents a multipole expansion, obtained by expanding 6(x - xo). 
t This is often referred to as the Green’s Tensor. 
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Consequently, (2.6) reduces to the equations for the fundamental solution, 

LWf = G ~ ( x ) ,  

where G, the source strength, is a constant. The fundamental solution is related 
to the fundamental matrix by Wf = W. G. Equation (2.11) shows that the source 
strengths G are the quantities F integrated over the body surface. In  the momen- 
tum equation, this is the total pressure and viscous force exerted on the fluid 
by the body; in the energy equation, it is the total heat added by the body. 
The source in the heat conduction equation will be referred to as the virtual heat 
conduction; it is significant when, for example, a temperature gradient is 
maintained across the body. 

It should be emphasized that this result is not based on the assumption of a 
thin body. However, the linearization is essential in all the above, since the 
mechanical work was subtracted from the energy equation by multiplying the 
momentum equation by U. Without the linearization, the momentum equation 
must be multiplied by u, which involves a product of distributions, a meaning- 
less concept. 

Reduction to Jive eqmtions 
The above set of equations can be reduced to five equations by substituting Q 
from the heat conduction equation into the energy equation. We shall consider 
the following system for the fundamental matrix: 

where 
AV = ~ S ( X ) ,  (2.12) 

u.v W. 0 &[ v u.w-yv2-?)wv. xw 1. 
The zeroth-order solution for flow past a thin body (corresponding to flow past 
a disk) is given in terms of V by? 

(2.13) 

0 XW. u.w-p 

0 

[ e,.[Q-Z(Pl-II).U] 1 e,. [Pl -II] dx’dy’, (2.14) v = [je(xf, y’) v(x - xt, - yl, 2). 

(here [ 3 denotes the jump across the body) and the far field flow by 

v - V . [0, n . (P1 - n), n . Q - Xn . (P1 - II) . U] dX 

+ ( ~ ~ n f T d s ] . V V . [ O , O , O , O ,  1]dS, (2.15) 

1s 
where v = (p,u,  T). 

3. Non-dissipative theory 
In  $4, we shall obtain the fundamental solution corresponding to the Oseen 

operator (2.12). It has already been shown that such a solution furnishes the 

t To this order the source term Ee,[T] in the heat conduction equation can be ignored, 
since [TI = O ( E )  under usual circumstances. 
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flow far from a body. The method of solution is essentially a boundary-layer 
analysis carried out in the regions of singularities of the non-dissipative solution. 
Consequently, the non-dissipative fundamental matrix must first be determined. 

The non-dissipative fundamental matrix is the solution to 

where 

To solve (3.1), we introduce Fourier transforms. Then 

A,,(ik) = 

so that V(ik) = A&, and 

ik,U ik ,  ik,  ik3 [ :i i k t  0 

ik,U 0 0 ik,X 

ik,  U ik, x 
0 ik,X ik,X ik,X iklU 

(3.3) 

A 

where DNDis the determinant of AND(ik) and CNDthe transposed cofactor matrix. 
The determinant is given by DND = ik!U3{k:( U2  - y )  - y(k i  + kg)}, and 6, 
can be written e N D  = k:UQCND, where the elements of c ,  are polynomials in 
ik,, ik,, ik,. They can be extracted from the integration as derivatives to give:t 

and r = iu(u2--y). I 
We carry out the integration of (3.6) f i s t  with respect to k,. If (U2- y )  > 0, 

corresponding to supersonic flow, D = 0 has three real roots. If U 2 - y  < 0, 
corresponding to subsonic flow, then D = 0 has one real root, k, = 0, and two 
complex conjugate roots. The path of integration is deformed under the real roots 
because, as shown in 9 4, the effect of dissipation is to move them into the upper 
half-plane. 

by replacing ik,, ik , ,  ik, by a l a s  a/ay, a/az respectively. 
t By C,,(a/az, a/ay, a/&) we mean a matrix operator obtained from CND(ikl, ik,, ik,) 
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Denoting by Q0 the contribution to Q from the k, = 0 root, and by @h or 
Oe the remaining contribution in the supersonic (hyperbolic) or subsonic (elliptic) 
case, we obtain 1 1 

@ - - H ( x )  - In (92 + z2)*, (3.7) 0 - 2 n  yu 

1 1 
- -IT(%)- In (y2+ z2)+, 
2n yu 

4nyU (y2+22)4 

-- ln(y2+z2)*sgn(x), (3.9) 4nyu 

(3.8) 

a e X  sinh-1- 
1 

Q e =  -- 

1 

- -a:. a h = - -  2 Y where 
u2- y 

(Do can be added to O h  or Qe producing a cancellation (or partial cancellation 
in the subsonic case) of the logarithmic terms. However, as is well known, the 
three-dimensional solution contains a wake which, e.g. exhibits across it a jump 
in uy. In the present form, these effects are contained in (Do; and Oe do not 
contribute to the wake. Consequently, when the dissipative solution is discussed, 
it will be seen that it is necessary to refine Qo in the neighbourhood of y2 + z2 = 0, 
while Qh must be altered only along the Mach cone agx2 - (y2 + z2) = 0, and Qe 
remains unchanged. 

In addition, the elements of C, take particularly simple forms when operat- 
ing on either o0 or Qe and (Dh. In  fact, we can write (3.5) in the form 

The reason for the existence of this representation is the following: the 
contributions to the integral (3.6) occur only at  the zero8 of D. C, is therefore 
the classical adjoint of a degenerate matrix, and for the Oh and Qe contribution 
its rank is n- 1. From this (3.11) follows (see e.g. Nomizu 1966). For the @,, 
contribution, the rank is n - 3, and such a representation does not exist. How- 
ever, (3.12) follows, since aQo/ax = 0. 

Flow past bodies 
Equation (2.10) can be used to obtain the standard solutions of three-dimensional 
wing theory. For non-dissipative flows the heat conduction equation does not 
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enter, and w, W in (2.10) can be formally replaced by v and V, where V is given 
by (3.7)-(3.12). The vectors N, N* can be replaced by the 5-vectors, 

N = (0, -p,(f2 -f;L -~o(f;-fJ, ( P U - P A G u m  -fa} 
N* = (0, 0, 0, - P&f+ -f-), 0). 

These are obtained from (2.7) and (2.8), when 6 = q = 6 = 0. 

4. Dissipative theory 
In  this section, the fundamental solution corresponding to the dissipative 

equations will be obtained. As pointed out in $2, the fundamental solution 
provides the far field solution. It also furnishes the full flow field if the super- 
position described in $ 2  is carried out. This, however, will not be done in the 
present paper. 

The equations for the fundamental solution are given above ((2.12), (2.13)), 
and, as in the non-dissipative case, the solution can be written in the form, 

where A-1 denotes the inverse of A, and t? and D are the transposed cofactor 
matrix and determinant of A, respectively. 

The integration indicated in (4.1) cannot be carried out, and so an asymptotic 
solution will be obtained. The point of view taken is that the non-dissipative 
solution is satisfactory in the regions bounded away from its ingularities, which 
occur along the characteristics. In  the present case, these are the wake and the 
Mach cone. They indicate regions where the higher-order derivatives, or the 
dissipative terms, become important. We shall examine the neighbourhood of the 
characteristics using a boundary-layer-type analysis. 

The waket 
The wake is characterized by the fact that the derivatives across it are large 
compared with the derivatives along it. If the previously unspecified length scale 
L is fixed by 

(4.2) max {Q r ,  t}  = 1, 

then the condition on the derivatives becomes, in terms of the wave-numbers, 

It is then found that the leading terms in D are: 

t The asymptotic analysis is carried out in wave-number space, following and generaliz- 
ing to three dimensions a method given by Sirovich (1961). 
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This result was obtained by requiring the leading dissipative and non-dissipative 
terms to be of the same order. A consequence of this is that 

k, - @, (4.5) 

which furnishes the relative order of k,, k,, k,. 

order : 
With this ordering, it can readily be found that the non-zero 65j are to lowest 

(by symmetry, Qij = 6&). From this we can deduce that 

I 4xt 

These solutions are the extension to the dissipative case of that portion of the 
non-dissipative solution given by (Do. 

The entire solution is given by adding the contribution from QE or Qh, al- 
though, as remarked in $ 3  and shown below, (Dh is also altered by the presence of 
dissipation. 

In the limit 5, c+ 0 the above solutions reduce to 

These are seen to correspond to the (Do contribution to the non-dissipative solution. 
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The Mach cone 

For supersonic flow, the non-dissipative solution contains a characteristic surface 
known as the Mach cone. The solution is non-zero only in the region downstream 
of the cone, and becomes unbounded as the cone is approached. In  the neigh- 
bourhood of the Mach cone, dissipation becomes important, and the solution 
must be re-examined in this region. 

It is convenient in the present case to choose L to be some arbitrary macro- 
scopic length, so that 

(4.8) 

We shall obtain an asymptotic solution applicable for small 6. The final solution 
must actually be independent of L. 

In (4.1) the cofactor matrix e can again be removed from the integral as a 
differential operator, and the solution is given in terms of the integral, 

6 = max{t,v,!J < 1. 

e*.= dk, dk, dk, 
(4.9) 

where D* = D/( U2k2,). From this it is evident that Q, is the solution to the differen- 
tial equation, 

(4.10) 

where S(x) = 6(z) S(y)  S(z).  Expanding the determinant to obtain D, we find this 
equation is: 

a2  2 

a ( a2 Z) [ 3 Z ( E 2  L) (;2 8 9 )  ] ( 8x3 ax ay2 
a 3  

-U(U2-y)-+yY- -+- +s a-i-b- -+- + c  -+- 

= 6 ( ~ )  6(y) 6(z). (4.11) 

The symbol 0(a2) denotes additional terms of the form S2+n times derivatives of 
order 5 + n, where n = 0, I, 2, and 

a = - c (3U2-  2y) +- a t  U2+- ( U2 - 1)) 

b = 6 - ( 3 U 2 -  4y) +- r t  Uz+ - ( U 2 -  2), 

6 8 6  

6 S 6  
c =  -2y - - -  C 6  

6 6' 

If 6 = 0, the solution to (4.11) is 

where a): = y/(  U2 - y). This result was obtained in $3. It is not a uniformly valid 
approximation for small 6, and the neighbourhood of the cone aiz2 - (y2 + z2) = 0, 
5 2 0 must be re-examined. To do this, we rewrite (4.11) in cylindrical co- 
ordinates, T = (y2 + z2)*, 8 = tan-l(z/y), x ,  and then transform to the co-ordinates 
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(h, t ,  8), where h denotes distance along the cone and t distance normal to it. 
This transformation is given by: 

h = x cos ern + T sin Om, 

t = -xsinO,=rcosB,. 

where 6, is the Mach cone angle, measured from the positive x axis. We define 
the inner variable T = t /  JS, and consider an inner expansion for @ of the form, 

@(h, T; 6 )  = A,(d) @Ah, T) + O ( A l ) ,  (4.13) 

where A,(& is to be determined. If the expansion (4.13) is substituted into (4.1 l),  
which must be rewritten in terms of h, T, 8, and the limit a+= 0 taken, we obtain 

(4.14) 

where s = a sin4 8, + b sin2 8, cos2 0, + c C O S ~  ern 0. The particular form of the 
stretching factor 48, used in defining the inner variable, was chosen to make the 
leading dissipative and non-dissipative terms the same order. 

We need not consider the singularity on the right-hand side, since the appro- 
priate solution to (4.14) will be obtained by matching with the outer solution, 
and by using certain integral conditions imposed by the requirement that the 
solution is the fundamental solution. We introduce the change in variables 

awl 
T = (2ycos8,/s)*T and I,+ = h*- 

a 7 2  ' 
so that (4.14) becomes 

(4.15) 

The fundamental matrix is obtained by operating on @ with the transposed 
cofactor matrix e. Since we have used D* instead of D, we have 

where C(k) = &(k)/U2&. 

Each of these operators must be written in terms of h, t, 8, transformed to inner 
variables, h, T ,  8, and evaluated in the limit S - t  0. The result is that the funda- 
mental matrix can be written in the form, 

(4.16) 

$ must be determined as a solution of (4.15) such that it matches with the 
inviscid solution as T+ - 00. To this end, we obtain the leading term in the inner 
expansion of the outer, inviscid solution. It is sufficient to match any one element 
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of K,, say ql, to obtain @ and A,(8). The matching of the remaining elements will 
then follow direotly. From $3, the outer solution for V,, is: 

J7 - _ - -  1 u  X 

2rI y2 [.2-(1/a;)(y2+22)]*’ 11 - 

where a; = y / (  U2 - y). We transform this solution to the (h, T )  variables, and 
take the leading term in the expansion in 6. The result is: 

where 

The expansion is limited to T < 0, corresponding to the interior of the Mach cone, 
since the non-dissipative solution vanishes outside the cone. 

We must match this with the leading term of the outer expansion of the inner 

A,(& 
solution, which is given by: 

& I =  --jj&@1(-TL 

where @,( - T )  denotes the leading term in the expansion of @ ( T )  for small 
6 (or large T ) ,  with t < 0. Hence we see that A,(&) = 8&, and $ must be such that 

as T-+-co. (4.18) 
B 

$47) @,(--TI = -- Id* 
Equation (4.15) admits a similarity solution of the form, 

(4.19) 

If @ is to have the form (4.18) as T +  - co, or v+ - 03, then clearly we must have: 

as v-+-co ,  
B 9 ”  -~ 

2J21vI~ 
(4.20) 

and n = -2. With this choice of n, g satisfies the confluent hypergeometric 

(4.21) 
equation, 

v g ” + ( + - v ) g ’ - % g  = 0.  

Two independent solutions are 

g ,  = B($, B, v) 
3 T 2  7 T4 = I - - - + - - +  
8 h 128 h2 * ‘ ”  

and 

(4.22) 

(4.23) 
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where H(a,c ,x)  is the confluent hypergeometric series. As v+ -a, we have 

(4.24) 

(4.25) 

where F(x) is the gamma function, and sgn (7) denotes the sign of 7. The full 
solution is a linear combination of g1 and g,, 

9 = C191+czgz, 

where cl, c2 must be determined. One relation for cl, c, is obtained from the match- 
ing condition (4.18), which, with (4.24) and (4.25), gives: 

(4.26) 

In order to find c1 and c2, we need a second condition on g. This can be obtained 
by recalling that the solution must be a fundamental solution, and the governing 
equations contain the delta function on the right-hand side. Consider, e.g. the 
continuity equation, 

From this we obtain: /s(pU.n+u,n)dS = 1 ,  (4.27) 

for any surface S enclosing the origin. 
We use for p and u in this integral the composite expansion VC = do) + v(Q - vi(o), 

which is a uniformly valid solution over the entire flow field. Here 11 denotes any 
variable, do) the outer solution, dothe inner solution, and vi(o) the inner expansion 
of the outer solution. 

u . v p + v . u  = 6(x). 

We substitute pc and uc into (4.27). Then, sincet 

Is ( p ( ~ .  n + u(0). n) ds = 1, 

(4.28) 

We choose for S the conical surface S with apex at (xo, 0, 0),  normal to the Mach 
cone, and extending to infinity, i.e. the surface, 

(x-xo)2-a; (y2+z2)  = 0 (x < xo). 

(x-x1)2+y2+z2 = (l/a;)(2,-zo)2 (z < XI), 

More precisely, we consider the finite portion of S given by z1 < x < zo, and the 
hemisphere, 

t This integral does not, in fact, exist in the ordinary sense, since the integrand becomes 
infinite as l/t# as the Mach cone is approached. However, fundamental solutions must be 
expressed as distributions; it is in this sense that such integrals must be evaluated (see 
e.g. Gelfand & Shilov 1964). Alternatively, one may use the concept of finite part, as f3st 
introduced by Hadamad (1932). 
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and take the limit xl+ - co. The integral over the hemisphere vanishes in the 
limit, and we are left only with the integral over S. 

On the surface 8, U. n = U cos 6, and ZL . n = ux cos 0, -I- (ui + u;)* sin 6,. 
In  terms of the fundamental matrix the integral in (4.28) is 

c J- [v,,u cos 6, + 5, cos 6, + ( v:, + v~,)s sin o,] dS. 
3 s  

The left-hand side is obtained by using 

1 V$’= - -y -Jp ,  
d*h* 

and the right-hand side by using 

(We obtained above the form of V$’). The remaining elements of V$) are found 
in the same manner.) 

Equation (4.28) reduces to 

Now, 

(4.29) 

where R is distance along S from the apex (xo,O,O), and is related to 7 by 
R = xo sin 6, + t = xo sin 0, - hd*7’(h = ( 4 2 y  cos Om)*, 7’ = - 7) .  Hence, the above 

This integral, which must be interpreted within the framework of the theory of 
distributions (see the last footnote), vanishes to lowest order in 8. Consequently, 
4 must satisfy the condition 

(4.30) 

or 

where g*(7/.Jh) = g*(a) = g(7a/h). Now, R = xosin6-h(dh)*v, so the above 
integral may be written: 

j;: B/h(8h)* 
g* (a )  (xosin6,-h(6h)b) h(8h)*da. 

To lowest order in 6, we therefore have 

g*(cT)da = 0. 1:: 
This condition requires that g* be an odd function of T.  Hence c1 = 0, and the 
solution is 

(4.31) 
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or (4.32) 

where L(7/Jh)  = H(2,  #, - 72/4h) is plotted in figure 1. Note that 

L( - z) = - L(x) .  

As z-+ co, L(z) -+ 1.382/&. This curve is indicated by the broken line in the figure. 

0 1 2 3 4 5 6 7 8 9 10 

X 

FIGURE 1. The function L(T/&), which describes the structure of the Mach cone accord- 
ing to (4.32). The curve is antisymmetric, L( -T /&)  = -L(T/&), and is plotted only 
for positive argument. The broken curve represents the inviscid solution. 

5. Conclusions 
The fundamental solution provides the far field flow within the framework 

of the approximations described above. The various regions which we have 
studied can be combined to obtain a picture of the complete flow field. Behind 
the body there is a wake structured by the dissipative effects. In  subsonic flow 
the effects of viscosity and thermal conductivity are confined to this region, but in 
supersonic flow the Mach cone also becomes structured through the action of 
dissipation. Behind the Mach cone, the flow is given by the non-dissipative theory, 
and this solution matches the solution near the Mach cone in an asymptotic sense. 

The solution in the wake is a natural extension of the results of Sirovich (1968). 
There the wake was found to be of the form e-Av'lz/ Jx, where y is the direction 
normal to the wake. In  the present case, this term is replaced by 

(e-"'/X/ 4%) (e-*n'/z/&). 

In  addition, there are terms with no counterpart in the two-dimensional case 
(V,,, V34, K4), which describe the cross-flow. 

The wake solution is a generalization to compressible flow of the well-known 
solution of the far field laminar wake (e.g. Landau & Lifshitz 1959), and is 
completely analogous in form. However, the wake now consists of two parts, 
one a vorticity wake structured by viscosity, and the other an entropy wake 
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structured by thermal conductivity. Only the vorticity wake occurs in in- 
compressible flow. This decoupling of the wake was also noted by Sirovich in 
the two-dimensional case. 

The structure of the three-dimensional Mach cone is in complete contrast to 
the two-dimensional Mach lines. The solution for the Mach lines is the same as 
for the wake, with y and x replaced by distance normal to, and distance along, 
the Mach line (Sirovich 1968). In the three-dimensional case, the solution grows 
like l/t* as the Mach cone is approached, as in the non-dissipative theory. 
However, as t approaches zero, the dissipation becomes important, causing the 
solution to decrease, pass through the origin at  t = 0, and then behave in an 
antisymmetric fashion for t < 0, as illustrated in figure 1. 
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